Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An R2R3 MYB transcription factor determines red petal colour in an Actinidia (kiwifruit) hybrid population.

Identifieur interne : 000482 ( Main/Exploration ); précédent : 000481; suivant : 000483

An R2R3 MYB transcription factor determines red petal colour in an Actinidia (kiwifruit) hybrid population.

Auteurs : Lena G. Fraser [Nouvelle-Zélande] ; Alan G. Seal ; Mirco Montefiori ; Tony K. Mcghie ; Gianna K. Tsang ; Paul M. Datson ; Elena Hilario ; Hinga E. Marsh ; Juanita K. Dunn ; Roger P. Hellens ; Kevin M. Davies ; Mark A. Mcneilage ; H Nihal De Silva ; Andrew C. Allan

Source :

RBID : pubmed:23324587

Descripteurs français

English descriptors

Abstract

BACKGROUND

Red colour in kiwifruit results from the presence of anthocyanin pigments. Their expression, however, is complex, and varies among genotypes, species, tissues and environments. An understanding of the biosynthesis, physiology and genetics of the anthocyanins involved, and the control of their expression in different tissues, is required. A complex, the MBW complex, consisting of R2R3-MYB and bHLH transcription factors together with a WD-repeat protein, activates anthocyanin 3-O-galactosyltransferase (F3GT1) to produce anthocyanins. We examined the expression and genetic control of anthocyanins in flowers of Actinidia hybrid families segregating for red and white petal colour.

RESULTS

Four inter-related backcross families between Actinidia chinensis Planch. var. chinensis and Actinidia eriantha Benth. were identified that segregated 1:1 for red or white petal colour. Flower pigments consisted of five known anthocyanins (two delphinidin-based and three cyanidin-based) and three unknowns. Intensity and hue differed in red petals from pale pink to deep magenta, and while intensity of colour increased with total concentration of anthocyanin, no association was found between any particular anthocyanin data and hue. Real time qPCR demonstrated that an R2R3 MYB, MYB110a, was expressed at significant levels in red-petalled progeny, but not in individuals with white petals.A microsatellite marker was developed that identified alleles that segregated with red petal colour, but not with ovary, stamen filament, or fruit flesh colour in these families. The marker mapped to chromosome 10 in Actinidia.The white petal phenotype was complemented by syringing Agrobacterium tumefaciens carrying Actinidia 35S::MYB110a into the petal tissue. Red pigments developed in white petals both with, and without, co-transformation with Actinidia bHLH partners. MYB110a was shown to directly activate Actinidia F3GT1 in transient assays.

CONCLUSIONS

The transcription factor, MYB110a, regulates anthocyanin production in petals in this hybrid population, but not in other flower tissues or mature fruit. The identification of delphinidin-based anthocyanins in these flowers provides candidates for colour enhancement in novel fruits.


DOI: 10.1186/1471-2164-14-28
PubMed: 23324587
PubMed Central: PMC3618344


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An R2R3 MYB transcription factor determines red petal colour in an Actinidia (kiwifruit) hybrid population.</title>
<author>
<name sortKey="Fraser, Lena G" sort="Fraser, Lena G" uniqKey="Fraser L" first="Lena G" last="Fraser">Lena G. Fraser</name>
<affiliation wicri:level="1">
<nlm:affiliation>The New Zealand Institute for Plant & Food Research Limited, 120 Mt. Albert Road, Auckland 1142, New Zealand. lena.fraser@plantandfood.co.nz</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>The New Zealand Institute for Plant & Food Research Limited, 120 Mt. Albert Road, Auckland 1142</wicri:regionArea>
<wicri:noRegion>Auckland 1142</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seal, Alan G" sort="Seal, Alan G" uniqKey="Seal A" first="Alan G" last="Seal">Alan G. Seal</name>
</author>
<author>
<name sortKey="Montefiori, Mirco" sort="Montefiori, Mirco" uniqKey="Montefiori M" first="Mirco" last="Montefiori">Mirco Montefiori</name>
</author>
<author>
<name sortKey="Mcghie, Tony K" sort="Mcghie, Tony K" uniqKey="Mcghie T" first="Tony K" last="Mcghie">Tony K. Mcghie</name>
</author>
<author>
<name sortKey="Tsang, Gianna K" sort="Tsang, Gianna K" uniqKey="Tsang G" first="Gianna K" last="Tsang">Gianna K. Tsang</name>
</author>
<author>
<name sortKey="Datson, Paul M" sort="Datson, Paul M" uniqKey="Datson P" first="Paul M" last="Datson">Paul M. Datson</name>
</author>
<author>
<name sortKey="Hilario, Elena" sort="Hilario, Elena" uniqKey="Hilario E" first="Elena" last="Hilario">Elena Hilario</name>
</author>
<author>
<name sortKey="Marsh, Hinga E" sort="Marsh, Hinga E" uniqKey="Marsh H" first="Hinga E" last="Marsh">Hinga E. Marsh</name>
</author>
<author>
<name sortKey="Dunn, Juanita K" sort="Dunn, Juanita K" uniqKey="Dunn J" first="Juanita K" last="Dunn">Juanita K. Dunn</name>
</author>
<author>
<name sortKey="Hellens, Roger P" sort="Hellens, Roger P" uniqKey="Hellens R" first="Roger P" last="Hellens">Roger P. Hellens</name>
</author>
<author>
<name sortKey="Davies, Kevin M" sort="Davies, Kevin M" uniqKey="Davies K" first="Kevin M" last="Davies">Kevin M. Davies</name>
</author>
<author>
<name sortKey="Mcneilage, Mark A" sort="Mcneilage, Mark A" uniqKey="Mcneilage M" first="Mark A" last="Mcneilage">Mark A. Mcneilage</name>
</author>
<author>
<name sortKey="De Silva, H Nihal" sort="De Silva, H Nihal" uniqKey="De Silva H" first="H Nihal" last="De Silva">H Nihal De Silva</name>
</author>
<author>
<name sortKey="Allan, Andrew C" sort="Allan, Andrew C" uniqKey="Allan A" first="Andrew C" last="Allan">Andrew C. Allan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23324587</idno>
<idno type="pmid">23324587</idno>
<idno type="doi">10.1186/1471-2164-14-28</idno>
<idno type="pmc">PMC3618344</idno>
<idno type="wicri:Area/Main/Corpus">000477</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000477</idno>
<idno type="wicri:Area/Main/Curation">000477</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000477</idno>
<idno type="wicri:Area/Main/Exploration">000477</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An R2R3 MYB transcription factor determines red petal colour in an Actinidia (kiwifruit) hybrid population.</title>
<author>
<name sortKey="Fraser, Lena G" sort="Fraser, Lena G" uniqKey="Fraser L" first="Lena G" last="Fraser">Lena G. Fraser</name>
<affiliation wicri:level="1">
<nlm:affiliation>The New Zealand Institute for Plant & Food Research Limited, 120 Mt. Albert Road, Auckland 1142, New Zealand. lena.fraser@plantandfood.co.nz</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>The New Zealand Institute for Plant & Food Research Limited, 120 Mt. Albert Road, Auckland 1142</wicri:regionArea>
<wicri:noRegion>Auckland 1142</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seal, Alan G" sort="Seal, Alan G" uniqKey="Seal A" first="Alan G" last="Seal">Alan G. Seal</name>
</author>
<author>
<name sortKey="Montefiori, Mirco" sort="Montefiori, Mirco" uniqKey="Montefiori M" first="Mirco" last="Montefiori">Mirco Montefiori</name>
</author>
<author>
<name sortKey="Mcghie, Tony K" sort="Mcghie, Tony K" uniqKey="Mcghie T" first="Tony K" last="Mcghie">Tony K. Mcghie</name>
</author>
<author>
<name sortKey="Tsang, Gianna K" sort="Tsang, Gianna K" uniqKey="Tsang G" first="Gianna K" last="Tsang">Gianna K. Tsang</name>
</author>
<author>
<name sortKey="Datson, Paul M" sort="Datson, Paul M" uniqKey="Datson P" first="Paul M" last="Datson">Paul M. Datson</name>
</author>
<author>
<name sortKey="Hilario, Elena" sort="Hilario, Elena" uniqKey="Hilario E" first="Elena" last="Hilario">Elena Hilario</name>
</author>
<author>
<name sortKey="Marsh, Hinga E" sort="Marsh, Hinga E" uniqKey="Marsh H" first="Hinga E" last="Marsh">Hinga E. Marsh</name>
</author>
<author>
<name sortKey="Dunn, Juanita K" sort="Dunn, Juanita K" uniqKey="Dunn J" first="Juanita K" last="Dunn">Juanita K. Dunn</name>
</author>
<author>
<name sortKey="Hellens, Roger P" sort="Hellens, Roger P" uniqKey="Hellens R" first="Roger P" last="Hellens">Roger P. Hellens</name>
</author>
<author>
<name sortKey="Davies, Kevin M" sort="Davies, Kevin M" uniqKey="Davies K" first="Kevin M" last="Davies">Kevin M. Davies</name>
</author>
<author>
<name sortKey="Mcneilage, Mark A" sort="Mcneilage, Mark A" uniqKey="Mcneilage M" first="Mark A" last="Mcneilage">Mark A. Mcneilage</name>
</author>
<author>
<name sortKey="De Silva, H Nihal" sort="De Silva, H Nihal" uniqKey="De Silva H" first="H Nihal" last="De Silva">H Nihal De Silva</name>
</author>
<author>
<name sortKey="Allan, Andrew C" sort="Allan, Andrew C" uniqKey="Allan A" first="Andrew C" last="Allan">Andrew C. Allan</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actinidia (genetics)</term>
<term>Actinidia (metabolism)</term>
<term>Acyltransferases (genetics)</term>
<term>Acyltransferases (metabolism)</term>
<term>Alleles (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Anthocyanins (biosynthesis)</term>
<term>Anthocyanins (chemistry)</term>
<term>Chromosomes, Plant (MeSH)</term>
<term>Color (MeSH)</term>
<term>Flowers (genetics)</term>
<term>Flowers (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Microsatellite Repeats (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (classification)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Transcription Factors (classification)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Actinidia (génétique)</term>
<term>Actinidia (métabolisme)</term>
<term>Acyltransferases (génétique)</term>
<term>Acyltransferases (métabolisme)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Allèles (MeSH)</term>
<term>Anthocyanes (biosynthèse)</term>
<term>Anthocyanes (composition chimique)</term>
<term>Chromosomes de plante (MeSH)</term>
<term>Couleur (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Facteurs de transcription (classification)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Fleurs (génétique)</term>
<term>Fleurs (métabolisme)</term>
<term>Génotype (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Protéines végétales (classification)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Répétitions microsatellites (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Anthocyanins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anthocyanins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Acyltransferases</term>
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Anthocyanes</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Anthocyanes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Actinidia</term>
<term>Flowers</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Actinidia</term>
<term>Acyltransferases</term>
<term>Facteurs de transcription</term>
<term>Fleurs</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Actinidia</term>
<term>Acyltransferases</term>
<term>Flowers</term>
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Actinidia</term>
<term>Acyltransferases</term>
<term>Facteurs de transcription</term>
<term>Fleurs</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Amino Acid Sequence</term>
<term>Chromosomes, Plant</term>
<term>Color</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genotype</term>
<term>Microsatellite Repeats</term>
<term>Molecular Sequence Data</term>
<term>Phenotype</term>
<term>Phylogeny</term>
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Allèles</term>
<term>Chromosomes de plante</term>
<term>Couleur</term>
<term>Données de séquences moléculaires</term>
<term>Génotype</term>
<term>Phylogenèse</term>
<term>Phénotype</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Répétitions microsatellites</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Red colour in kiwifruit results from the presence of anthocyanin pigments. Their expression, however, is complex, and varies among genotypes, species, tissues and environments. An understanding of the biosynthesis, physiology and genetics of the anthocyanins involved, and the control of their expression in different tissues, is required. A complex, the MBW complex, consisting of R2R3-MYB and bHLH transcription factors together with a WD-repeat protein, activates anthocyanin 3-O-galactosyltransferase (F3GT1) to produce anthocyanins. We examined the expression and genetic control of anthocyanins in flowers of Actinidia hybrid families segregating for red and white petal colour.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Four inter-related backcross families between Actinidia chinensis Planch. var. chinensis and Actinidia eriantha Benth. were identified that segregated 1:1 for red or white petal colour. Flower pigments consisted of five known anthocyanins (two delphinidin-based and three cyanidin-based) and three unknowns. Intensity and hue differed in red petals from pale pink to deep magenta, and while intensity of colour increased with total concentration of anthocyanin, no association was found between any particular anthocyanin data and hue. Real time qPCR demonstrated that an R2R3 MYB, MYB110a, was expressed at significant levels in red-petalled progeny, but not in individuals with white petals.A microsatellite marker was developed that identified alleles that segregated with red petal colour, but not with ovary, stamen filament, or fruit flesh colour in these families. The marker mapped to chromosome 10 in Actinidia.The white petal phenotype was complemented by syringing Agrobacterium tumefaciens carrying Actinidia 35S::MYB110a into the petal tissue. Red pigments developed in white petals both with, and without, co-transformation with Actinidia bHLH partners. MYB110a was shown to directly activate Actinidia F3GT1 in transient assays.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The transcription factor, MYB110a, regulates anthocyanin production in petals in this hybrid population, but not in other flower tissues or mature fruit. The identification of delphinidin-based anthocyanins in these flowers provides candidates for colour enhancement in novel fruits.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23324587</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>10</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2013</Year>
<Month>Jan</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>An R2R3 MYB transcription factor determines red petal colour in an Actinidia (kiwifruit) hybrid population.</ArticleTitle>
<Pagination>
<MedlinePgn>28</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-14-28</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Red colour in kiwifruit results from the presence of anthocyanin pigments. Their expression, however, is complex, and varies among genotypes, species, tissues and environments. An understanding of the biosynthesis, physiology and genetics of the anthocyanins involved, and the control of their expression in different tissues, is required. A complex, the MBW complex, consisting of R2R3-MYB and bHLH transcription factors together with a WD-repeat protein, activates anthocyanin 3-O-galactosyltransferase (F3GT1) to produce anthocyanins. We examined the expression and genetic control of anthocyanins in flowers of Actinidia hybrid families segregating for red and white petal colour.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Four inter-related backcross families between Actinidia chinensis Planch. var. chinensis and Actinidia eriantha Benth. were identified that segregated 1:1 for red or white petal colour. Flower pigments consisted of five known anthocyanins (two delphinidin-based and three cyanidin-based) and three unknowns. Intensity and hue differed in red petals from pale pink to deep magenta, and while intensity of colour increased with total concentration of anthocyanin, no association was found between any particular anthocyanin data and hue. Real time qPCR demonstrated that an R2R3 MYB, MYB110a, was expressed at significant levels in red-petalled progeny, but not in individuals with white petals.A microsatellite marker was developed that identified alleles that segregated with red petal colour, but not with ovary, stamen filament, or fruit flesh colour in these families. The marker mapped to chromosome 10 in Actinidia.The white petal phenotype was complemented by syringing Agrobacterium tumefaciens carrying Actinidia 35S::MYB110a into the petal tissue. Red pigments developed in white petals both with, and without, co-transformation with Actinidia bHLH partners. MYB110a was shown to directly activate Actinidia F3GT1 in transient assays.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The transcription factor, MYB110a, regulates anthocyanin production in petals in this hybrid population, but not in other flower tissues or mature fruit. The identification of delphinidin-based anthocyanins in these flowers provides candidates for colour enhancement in novel fruits.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fraser</LastName>
<ForeName>Lena G</ForeName>
<Initials>LG</Initials>
<AffiliationInfo>
<Affiliation>The New Zealand Institute for Plant & Food Research Limited, 120 Mt. Albert Road, Auckland 1142, New Zealand. lena.fraser@plantandfood.co.nz</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Seal</LastName>
<ForeName>Alan G</ForeName>
<Initials>AG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Montefiori</LastName>
<ForeName>Mirco</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McGhie</LastName>
<ForeName>Tony K</ForeName>
<Initials>TK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tsang</LastName>
<ForeName>Gianna K</ForeName>
<Initials>GK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Datson</LastName>
<ForeName>Paul M</ForeName>
<Initials>PM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hilario</LastName>
<ForeName>Elena</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Marsh</LastName>
<ForeName>Hinga E</ForeName>
<Initials>HE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dunn</LastName>
<ForeName>Juanita K</ForeName>
<Initials>JK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hellens</LastName>
<ForeName>Roger P</ForeName>
<Initials>RP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Davies</LastName>
<ForeName>Kevin M</ForeName>
<Initials>KM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McNeilage</LastName>
<ForeName>Mark A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>De Silva</LastName>
<ForeName>H Nihal</ForeName>
<Initials>HN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Allan</LastName>
<ForeName>Andrew C</ForeName>
<Initials>AC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>01</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000872">Anthocyanins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.-</RegistryNumber>
<NameOfSubstance UI="D000217">Acyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.-</RegistryNumber>
<NameOfSubstance UI="C413522">hydroxycinnamoyl-CoA - anthocyanin 3-O-glucoside-6''-O-acyltransferase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D029042" MajorTopicYN="N">Actinidia</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000217" MajorTopicYN="N">Acyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="N">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000872" MajorTopicYN="N">Anthocyanins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003116" MajorTopicYN="N">Color</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035264" MajorTopicYN="N">Flowers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="N">Microsatellite Repeats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>06</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>01</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>1</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>1</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23324587</ArticleId>
<ArticleId IdType="pii">1471-2164-14-28</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-14-28</ArticleId>
<ArticleId IdType="pmc">PMC3618344</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2011 Apr;66(1):94-116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21443626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Nov;64(22):2900-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17726576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Nov;28(3):319-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11722774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Mar;13(3):99-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18280199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:351</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18655731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:761-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2009 Mar 11;57(5):2035-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19203266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Jul;34(7):1176-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21410713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutr Res Rev. 2006 Jun;19(1):137-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19079881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19284545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13579-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11095727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 May;10(5):236-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15882656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Sep;55(6):954-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18532977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:405-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Mar;53(5):814-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18036197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2009 Aug 12;57(15):6856-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19572542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jan;65(1):106-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21175894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Sep;55(6):940-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18532978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20302676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Apr;18(4):831-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Mar;65(5):771-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21235651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Aug;11(8):1433-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10449578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Oct;40(1):22-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15361138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):506-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20921174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Jul;19(1):81-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10417729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2004 Jun;5(2):150-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15260895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Nutr Food Res. 2007 Jun;51(6):675-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17533652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Feb;49(3):414-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17181777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Aug;39(3):366-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15255866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2005 Dec 18;1:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16359558</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Nouvelle-Zélande</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Allan, Andrew C" sort="Allan, Andrew C" uniqKey="Allan A" first="Andrew C" last="Allan">Andrew C. Allan</name>
<name sortKey="Datson, Paul M" sort="Datson, Paul M" uniqKey="Datson P" first="Paul M" last="Datson">Paul M. Datson</name>
<name sortKey="Davies, Kevin M" sort="Davies, Kevin M" uniqKey="Davies K" first="Kevin M" last="Davies">Kevin M. Davies</name>
<name sortKey="De Silva, H Nihal" sort="De Silva, H Nihal" uniqKey="De Silva H" first="H Nihal" last="De Silva">H Nihal De Silva</name>
<name sortKey="Dunn, Juanita K" sort="Dunn, Juanita K" uniqKey="Dunn J" first="Juanita K" last="Dunn">Juanita K. Dunn</name>
<name sortKey="Hellens, Roger P" sort="Hellens, Roger P" uniqKey="Hellens R" first="Roger P" last="Hellens">Roger P. Hellens</name>
<name sortKey="Hilario, Elena" sort="Hilario, Elena" uniqKey="Hilario E" first="Elena" last="Hilario">Elena Hilario</name>
<name sortKey="Marsh, Hinga E" sort="Marsh, Hinga E" uniqKey="Marsh H" first="Hinga E" last="Marsh">Hinga E. Marsh</name>
<name sortKey="Mcghie, Tony K" sort="Mcghie, Tony K" uniqKey="Mcghie T" first="Tony K" last="Mcghie">Tony K. Mcghie</name>
<name sortKey="Mcneilage, Mark A" sort="Mcneilage, Mark A" uniqKey="Mcneilage M" first="Mark A" last="Mcneilage">Mark A. Mcneilage</name>
<name sortKey="Montefiori, Mirco" sort="Montefiori, Mirco" uniqKey="Montefiori M" first="Mirco" last="Montefiori">Mirco Montefiori</name>
<name sortKey="Seal, Alan G" sort="Seal, Alan G" uniqKey="Seal A" first="Alan G" last="Seal">Alan G. Seal</name>
<name sortKey="Tsang, Gianna K" sort="Tsang, Gianna K" uniqKey="Tsang G" first="Gianna K" last="Tsang">Gianna K. Tsang</name>
</noCountry>
<country name="Nouvelle-Zélande">
<noRegion>
<name sortKey="Fraser, Lena G" sort="Fraser, Lena G" uniqKey="Fraser L" first="Lena G" last="Fraser">Lena G. Fraser</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000482 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000482 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23324587
   |texte=   An R2R3 MYB transcription factor determines red petal colour in an Actinidia (kiwifruit) hybrid population.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23324587" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024